On the use of lumped sources in lightning return stroke models

نویسندگان

  • Yoshihiro Baba
  • Vladimir A. Rakov
چکیده

[1] We consider the use of lumped voltage and current sources in engineering lightning return stroke models with emphasis on those including a tall strike object. If the model is to be used for computing remote electric and magnetic fields, we suggest a representation of the lightning channel as a transmission line energized by a lumped voltage source, with the voltage magnitude being expressed in terms of the lightning short-circuit current and equivalent impedance of the lightning channel. Such a representation assures appropriate boundary conditions (reflection and transmission coefficients) at the channel attachment point and is equivalent to a distributed-shuntcurrent-source representation of the lightning channel. This is in contrast with the use of series ideal current source which presents infinitely large impedance to current waves reflected from the ground and/or from discontinuities in the lightning channel, such as the moving return stroke front or branches, and therefore is inadequate when such reflections are involved. If the model is to be used only for injecting lightning current into a grounded object or system, a Norton equivalent circuit (an ideal current source in parallel with the equivalent impedance of the lightning channel) is sufficient to represent the lightning discharge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Closed-Form Solutions for Broad-Band Equivalent Circuit of Vertical Rod Buried in Lossy Grounds Subjected to Lightning Strokes

Abstract— In this paper, input impedance of a vertical rod under lightning stroke is first computed by applying the method of moments (MoM) on the Maxwell’s equations. The circuit model is then achieved through applying modified vector fitting (MVF) on the computed input impedance. After then the equivalent circuit is again extracted for a few values of soil conductivity and rod radius. Finally...

متن کامل

Electromagnetic models of the lightning return stroke

[1] Lightning return-stroke models are needed for specifying the source in studying the production of transient optical emission (elves) in the lower ionosphere, the energetic radiation from lightning, and characterization of the Earth’s electromagnetic environment, as well as studying lightning interaction with various objects and systems. Reviewed here are models based on Maxwell’s equations ...

متن کامل

Electromagnetic Field Due to Lightning Strikes to Mountainous Ground

The produced electric and magnetic fields due to lightning strikes to mountainous ground are determined in this paper. For the sake of simplicity a cone-shaped ground with finite conductivity is assumed to represent a natural nonflat ground. By this assumption, we deal with an axillary symmetrical structure so we use the cylindrical 2D-FDTD to save the simulation memory and time, dramatically. ...

متن کامل

Improvements of an FDTD-Based Surge Simulation Code and Its Application to the Lightning Overvoltage Calculation of a Transmission Tower

This paper presents new features recently added to a general-purpose surge simulation code based on the FDTD (Finite Difference Time Domain) method. The added features include various-shape conductor models, lumped-parameter circuit-element models, a lightning-channel model, and an integrated analysis environment (IAE). For precisely modeling the shapes of various conductors, the following cond...

متن کامل

Tall-Structure Lightning Return-Stroke Modelling

A lightning return-stroke model, based on the lightning return-stroke current derivative measured at the Toronto CN Tower is presented in this paper. A 3-section transmission line representation of the CN Tower along with the derivative of the modified Heidler function is used to simulate the measured current derivative signal. Reflections from major structural discontinuities of the CN Tower a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005